

1

1																						
$\begin{aligned} & \text { FIRST } \mathrm{FASH} \\ & \text { DASH } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PIN } \\ & \text { NOM } \\ & \text { DAA } \end{aligned}$	$\begin{gathered} \text { A } \\ \text { DIA } \\ \text { MAX } \end{gathered}$	$\begin{aligned} & \mathbf{A}^{\prime} \\ & \text { DIA } \\ & \text { MIN } \end{aligned}$	$\underset{\text { REF }}{\mathbf{B}}$	D DIA		$\begin{aligned} & \text { TD } \\ & \text { DIA } \end{aligned}$	F	$\underset{\text { REF }}{\mathbf{H}}$	$\begin{gathered} \text { M } \\ \text { GAGE } \\ \text { PROT. } \end{gathered}$	$\underset{\text { RAD }}{\mathbf{R}}$	$\underset{\substack{\text { GAGE } \\ \text { DIA }}}{\mathbf{v}}$	$\underset{\text { MAX }}{\mathbf{Z}}$	$\underset{\substack{\text { CHAMFER } \\ \text { REF }}}{\mathbf{S}}$	THREAD MODIFIED	SOCKET				DOUBLE SHEAR MINIMUM	TENSION MINIMUM	TENSIONTENSION FATIGUE MINIMUM
						$\begin{array}{\|c\|c\|} \hline \text { AFTER } \\ \text { COATNG } \\ \text { OR SOLLD } \\ \text { FILM } \end{array}$										$\underset{H E X}{\mathbf{W}}$	$\underset{\substack{\text { DEPTH } \\ \text { MIN }}}{\mathbf{T}}$	$\underset{\substack{\text { DEPTH } \\ \text { MAX }}}{ }$	$\begin{gathered} \mathrm{Y} \mid \mathrm{A} \end{gathered}$			
5	5/32	. 2827	. 260	. 280	$\begin{aligned} & .1635 \\ & .1630 \\ & \hline \end{aligned}$	$\begin{aligned} & .1635 \\ & .1625 \\ & \hline \end{aligned}$	$\begin{array}{r} .1595 \\ .1570 \\ \hline \end{array}$. 004	. 049	$\begin{aligned} & .0330 \\ & .0298 \\ & \hline \end{aligned}$	$\begin{aligned} & .025 \\ & .015 \\ & \hline \end{aligned}$	$\begin{aligned} & .2028 \\ & \hline \end{aligned}$. 010	$1 / 32 \times 37^{\circ}$	$\begin{array}{r} \hline 1640-32 \\ \text { UNJC-32 } \\ \hline \end{array}$	$\begin{aligned} & .0801 \\ & .0791 \\ & \hline \end{aligned}$. 080	. 135	9	4,010	1,650	615
6	3/16	. 3277	. 293	. 290	$\begin{aligned} & \hline .1895 \\ & .1890 \\ & \hline \end{aligned}$	$\begin{aligned} & .1895 \\ & .1885 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .1840 \\ & .1810 \\ & \hline \end{aligned}$. 005	. 056	$\begin{aligned} & .0295 \\ & .0263 \\ & \hline \end{aligned}$	$\begin{array}{r} .030 \\ .020 \\ \hline \end{array}$	$\begin{aligned} & .2560 \\ & .2558 \\ & \hline \end{aligned}$. 015	$1 / 32 \times 37^{\circ}$	$\begin{array}{r} \hline \text { 1900-32 } \\ \text { UNJF-3A } \\ \hline \end{array}$	$\begin{aligned} & .0806 \\ & .0791 \\ & \hline \end{aligned}$. 080	. 135	$\begin{array}{r} .119 \\ .104 \\ \hline \end{array}$	5,380	2,400	900
7	7/32	. 3766	. 342	. 305	. 2182	$\begin{aligned} & .2182 \\ & .2172 \\ & \hline \end{aligned}$	$\begin{aligned} & .2100 \\ & .2070 \\ & \hline \end{aligned}$. 006	. 065	$\begin{aligned} & .0323 \\ & .0293 \\ & \hline \end{aligned}$	$\begin{aligned} & .030 \\ & .020 \end{aligned}$	$\begin{aligned} & .2982 \\ & .2980 \\ & \hline \end{aligned}$. 015	$1 / 32 \times 37^{\circ}$	$\begin{array}{r} 2160-28 \\ \text { UNJF-3A } \\ \hline \end{array}$	$\begin{array}{r} .0806 \\ .0791 \\ \hline \end{array}$. 080	. 145	.119 .104	7,194	3,250	1,137
8	1/4	. 4283	. 394	. 320	$\begin{array}{r} .2495 \\ .2490 \\ \hline \end{array}$	$\begin{array}{r} .2495 \\ .2485 \\ \hline \end{array}$	$\begin{array}{r} .2440 \\ .2410 \\ \hline \end{array}$. 006	074	$\begin{aligned} & .0227 \\ & .0195 \\ & \hline \end{aligned}$	$\begin{aligned} & .030 \\ & .020 \\ & \hline \end{aligned}$	$\begin{array}{r} .3732 \\ .3730 \\ \hline \end{array}$. 015	$1 / 32 \times 37^{\circ}$	$\begin{array}{r} 2500-28 \\ \text { UNJF-3A } \\ \hline \end{array}$	$\begin{array}{r} .0967 \\ .0947 \\ \hline \end{array}$. 090	. 160	$\begin{array}{r} .142 \\ .122 \\ \hline \end{array}$	9,300	4,500	1,575
10	5/16	5361	. 501	. 380	$\begin{aligned} & .3120 \\ & .3115 \\ & \hline \end{aligned}$	$\begin{array}{r} .3120 \\ .3110 \\ \hline \end{array}$	$\begin{array}{r} .3060 \\ .3020 \\ \hline \end{array}$. 007	092	$\begin{array}{r} .0234 \\ .0198 \\ \hline \end{array}$	$\begin{array}{r} .040 \\ .030 \\ \hline \end{array}$	$\begin{array}{r} .4791 \\ .4789 \\ \hline \end{array}$. 015	$3 / 64 \times 37^{\circ}$	$\begin{array}{r} 3125-24 \\ \text { UNJF-3A } \\ \hline \end{array}$	$\begin{array}{r} .1295 \\ .1270 \\ \hline \end{array}$. 110	. 200	.180 .160	14,600	6,850	2,397
12	3/8	. 6415	. 607	. 420	$\begin{aligned} & .3745 \\ & .3740 \\ & \hline \end{aligned}$	$\begin{array}{r} .3745 \\ .3735 \\ \hline \end{array}$	$\begin{array}{r} .3680 \\ .3640 \\ \hline \end{array}$. 008	. 110	$\begin{array}{r} .0295 \\ .0259 \\ \hline \end{array}$	$\begin{array}{r} .040 \\ .030 \\ \hline \end{array}$	$\begin{aligned} & .5698 \\ & \hline \end{aligned}$. 015	$3 / 64 \times 37^{\circ}$	$\begin{array}{r} 3750-24 \\ \text { UNJF-3A } \\ \hline \end{array}$	$\begin{array}{r} .1617 \\ .1582 \\ \hline \end{array}$. 140	. 235	.217 .197	21,000	10,200	3,570
14	7/16	. 7425	. 691	. 485	$\begin{aligned} & \hline .4370 \\ & .4365 \\ & \hline \end{aligned}$	$\begin{array}{r} .4370 \\ .4360 \\ \hline \end{array}$	$\begin{aligned} & .4310 \\ & .4260 \\ & \hline \end{aligned}$. 009	. 126	$\begin{array}{r} .0347 \\ .0307 \\ \hline \end{array}$	$\begin{aligned} & .050 \\ & .040 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .6582 \\ & \hline \end{aligned}$. 022	$3 / 64 \times 37^{\circ}$	$\begin{array}{r} 4375-20 \\ \text { UNJF-3A } \\ \hline \end{array}$	$\begin{aligned} & .1930 \\ & .1895 \\ & \hline \end{aligned}$. 170	. 275	$\begin{aligned} & .253 \\ & \hline .233 \\ & \hline \end{aligned}$	28,600	13,100	4,585
16	1/2	. 8423	. 791	. 525	$\begin{array}{r} .4995 \\ .4990 \\ \hline \end{array}$	$\begin{array}{r} .4995 \\ .4985 \\ \hline \end{array}$	$\begin{array}{r} .4930 \\ .4880 \\ \hline \end{array}$. 010	. 142	$\begin{array}{r} .0504 \\ .0464 \\ \hline \end{array}$	$\begin{array}{r} .050 \\ .040 \\ \hline \end{array}$	$\begin{aligned} & .7200 \\ & \hline \end{aligned}$. 022	$3 / 64 \times 37^{\circ}$	$\begin{array}{r} 5000-20 \\ \text { UNJF-3A } \\ \hline \end{array}$	$\begin{array}{r} .2242 \\ .2207 \\ \hline \end{array}$. 200	. 315	.289 .269	37,300	18,000	6,300
18	9/16	. 9300	. 881	. 600	$\begin{aligned} & .5615 \\ & .5610 \\ & \hline \end{aligned}$	$\begin{aligned} & .5615 \\ & .5605 \\ & \hline \end{aligned}$	$\begin{aligned} & .5550 \\ & .5500 \\ & \hline \end{aligned}$. 010	. 153	$\begin{aligned} & .0533 \\ & .0485 \\ & \hline \end{aligned}$	$\begin{array}{r} .050 \\ .040 \\ \hline \end{array}$	$\begin{aligned} & .8012 \\ & .8010 \\ & \hline \end{aligned}$. 022	$1 / 16 \times 37^{\circ}$	$\begin{array}{r} .5625-18 \\ \text { UNJF-3A } \\ \hline \end{array}$	$\begin{aligned} & .2555 \\ & .2520 \\ & \hline \end{aligned}$. 240	. 365	$\begin{aligned} & .326 \\ & .306 \\ & \hline \end{aligned}$	47,200	22,500	7,875
20	5/8	1.0440	. 995	. 640	.6240 .6235	$\begin{array}{r} .6240 \\ .6230 \\ \hline \end{array}$	$\begin{array}{r} .6180 \\ .6120 \\ \hline \end{array}$. 010	174	$\begin{array}{r} .0633 \\ .0589 \\ \hline \end{array}$	$\begin{array}{r} .050 \\ .040 \\ \hline \end{array}$	$\begin{array}{r} .8902 \\ .8900 \\ \hline \end{array}$. 022	$1 / 16 \times 37^{\circ}$	$\begin{array}{r} 6250-18 \\ \text { UNJF-3A } \\ \hline \end{array}$	$\begin{array}{r} .2555 \\ .2520 \\ \hline \end{array}$. 240	. 365	.326 .306	58,300	29,200	10,200
24	3/4	1.3000	1.251	. 895	$\begin{aligned} & .7490 \\ & .7485 \\ & \hline \end{aligned}$	$\begin{aligned} & .7490 \\ & .7480 \\ & \hline \end{aligned}$	$\begin{array}{r} .7430 \\ .7370 \\ \hline \end{array}$. 012	. 229	$\begin{aligned} & .0776 \\ & .0716 \\ & \hline \end{aligned}$	$\begin{array}{r} .050 \\ .040 \\ \hline \end{array}$	$\begin{aligned} & \hline 1.1124 \\ & 1.1122 \\ & \hline \end{aligned}$. 022	$1 / 16 \times 37^{\circ}$	$\begin{array}{r} 7500-16 \\ \text { UNJF-3A } \\ \hline \end{array}$	$\begin{array}{r} .3185 \\ .3150 \\ \hline \end{array}$. 300	. 465	$\begin{array}{r} .398 \\ .378 \\ \hline \end{array}$	83,900	46,000	16,100
28	$7 / 8$	1.5091	1.461	1.000	$\begin{aligned} & \hline .8740 \\ & .8735 \\ & \hline \end{aligned}$	$\begin{array}{r} .8400 \\ \hline .8730 \\ \hline \end{array}$	$\begin{aligned} & .8680 \\ & \hline .8610 \\ & \hline \end{aligned}$. 014	. 263	$\begin{aligned} & \hline .0694 \\ & .0622 \\ & \hline \end{aligned}$	$.050$	$\begin{aligned} & \hline 1.3440 \\ & 1.3438 \\ & \hline \end{aligned}$. 022	$5 / 64 \times 37^{\circ}$	$\begin{aligned} & \text { UN50-14 } \\ & \text { UNJF-3A } \end{aligned}$	$\begin{aligned} & .3820 \\ & .3780 \\ & \hline \end{aligned}$. 370	. 608	.471 .451	107,000	55,000	19,250
32	1	1.7201	1.671	1.160	$\begin{aligned} & .9990 \\ & \hline \end{aligned}$	$\begin{aligned} & .9990 \\ & .9980 \\ & \hline \end{aligned}$	$\begin{array}{r} .9930 \\ .9860 \\ \hline \end{array}$. 014	. 298	$\begin{array}{r} .0617 \\ .0536 \\ \hline \end{array}$	$\begin{array}{r} .050 \\ .040 \\ \hline \end{array}$	$\begin{aligned} & 1.5732 \\ & 1.5730 \\ & \hline \end{aligned}$. 022	$5 / 64 \times 37^{\circ}$	$\begin{aligned} & 1.0000-12 \\ & \text { UNJF-3A } \\ & \hline \end{aligned}$	$\begin{array}{r} .5100 \\ .5040 \\ \hline \end{array}$. 490	. 770	$\begin{aligned} & .618 \\ & .598 \\ & \hline \end{aligned}$	140,000	71,000	24,850
36	1-1/8	1.9350	1.887	1.305	1.240 1.235	1.240 1.230	1.1170 1.1100	. 015	. 340	$\begin{aligned} & .0560 \\ & .0475 \end{aligned}$	$\begin{aligned} & .060 \\ & .050 \end{aligned}$	$\begin{aligned} & 1.8026 \\ & 1.8024 \end{aligned}$. 022	$5 / 64 \times 37^{\circ}$	$\begin{aligned} & 1.1250-12 \\ & \hline \end{aligned}$	$\begin{aligned} & .5725 \\ & .5675 \end{aligned}$. 550	. 850	. 693	178,000	91,000	31,850

SEE COLLAR STANDARDS LOWER STRENGTH (PIN OR COLLAR) DETERMINES
SYSTEM STRENGTH.

THIS AREA OF SPECIAL CONFIGURATION AND COLD WORKING TO MEET PHYSICAL REQUIREMENTS

VIEW A
HI-LITETM THREAD TRANSITION AREA
"HI-LITE", "HST", AND "HI-KOTE" ARE TRADEMARK'S OF HI-SHEAR CORPORATION

DRAWNBY D.P.S.	DATE 2014-08-14 1983-02-04	HI-LITE ${ }^{\text {TM }}$ PIN
ED	DATE	
R.TING	1983-02-04	1/16 GRIP VARIATION
REVISION		DRAWING NUMBE
(34)	C.ARTOS 2023-04-07	HST755

1 Head edge out of roundness shall not exceed＂F＂．
2．Concentricity：Conical surface of head to＂D＂diameter within .003 FIM．
3．＂H＂is dimensioned from maximum＂D＂diameter．
4．Dimensions are in inches and to be met after finish
6．Hole preparation per NAS618
77 Fatigue test required on pins having grip length equals to two diameters or longer． Use maximum load rate per table．Minimum load rate is 10% of maximum load． 8 Curved or flat edge manufacturer＇s option．
9 Evidence of broken edge across points．
10．Use HST855 for oversize replacement．
（34） 11 After February， 21 st of $2015, \mathrm{HI}^{2}$ KOTE $^{\text {TM }} 1$ aluminum pigmented coating per Hi Shear Spec． 294 will be replaced by REACH compliant Hi－KOTE ${ }^{\text {TM }} 1$ NC aluminum pigmented coating per Hi－Shear Spec． 294 on fastenders coated in
After September 30th of 2015
12 After September 30th of 2015，HI－KOTE ${ }^{\text {TM }} 4$ coating per HS397 will be replaced by Hi－KOTEM 4 NC coating per HS397．

13 Finish code is obsolete and replaced by＂NAP＂Finish code

MATERIAL：6AL－4V titanium alloy per AMS4928 or AMS4967．
HEAT TREAT：160，000 psi tensile minimum（ 95,000 psi shear minimum for sizes up to $3 / 4$ ； 90,000 psi shear minimum for $7 / 8$ and larger）

HST755－（ ）－（ ）＝Anodized per Hi－Shear Spec．306，Type I，color blue，with
 11 HST755AT（ ）－（ ）$=$ HI－KOTETM 1 or HI－KOTE TM 1 NC
11 HST755AT（ ）（）$=$ HI－KOTE ${ }^{\text {TM }} 1$ or HI－KOTE ${ }^{\text {™ }} 1 \mathrm{NC}_{\text {aluminum }}$ pigmented coating per Hi－Shear Spec． 294 $=$ I．V．D．aluminum coating per MIL－DTL－83488，Type II（．00015－．00045 thick），
with color black on thread end，and cetyl alcohol lube per Hi－Shear Spec． 305
HST755CF（ ）－（ ）＝I．V．D．aluminum coating per MIL－DTL－83488，Type II（．00015－． 00045 thick），
$\begin{aligned} &\text { HST755HK（ })-() \begin{aligned} \text { with color black on thread end．}\end{aligned} \\ & \text { HST755JIKOTE } 4 \mathrm{NC} \text { aluminum coating per Hi－Shear Spec．} 397 .\end{aligned}$HST755JB（ ）－（ ）＝I．V．D．aluminum coating per MIL－DTL－83488，Type II（．00015－．00045 thick），or
$11 \operatorname{HST} 755 \mathrm{KM}()-()$
11 HST755KN（）－（）
HST755RP（）－（）
HST755UV（）－（） HST755VF（）－（）

11 HST755WM（ ）－（ ）＝HI－KOTETM 1 or HI－KOTE ${ }^{\text {TM }} 1 \mathrm{NC}$ aluminum pigmented coating per Hi－Shear Spec．294， with color white on hread end，and apply Precoat No．PR1436G sealant（．002－．005 thick），
13 HST755NKA（ ）－（ ）＝HI－KOTETM 1 NC aluminum pigmented coating per Hi－Shear Spec．294，and cetyl alcohol lube per Hi－Shear Spec． 305.
HST755NAP（ ）－（ ）＝HI－KOTE ${ }^{\text {TM }} 1$ NC aluminum coating per Hi－Shear Spec． 294 （ 0.0002 to 0.0005 Thickness） i－Shear Spec． 305
HST755NKY（ ）－（ ）＝Sulfuric Acid Anodizing per ISO8080，Hi－Kote 1 NC Aluminum Pigmented Coating per HS294 on threads only and cetyl alcohol lube per Hi－Shear Spec． 305
HST755NGD（ ）－（ ）＝HI－KOTE ${ }^{\text {TM }} 1$ NC Aluminum Pigmented Coating per Hi－Shear Spec． 294 on threads only ． 305
and the 1 NC Aluminum Pigmenter 294 on threads only and top of head only，white on thread end and cetyl alcohol lube per Hi－Shear Spec． 305. EN6118，and cetyl alcohol lube per Hi－Shear Spec． 305 ．
with color white on thread end and cetyl alcohol lube per Hi－Sh per Hi－Shear Spec． 294 $=$ HI－KOTE $^{\text {TM }} 1$ or HI－KOTE ${ }^{\text {TM }} 1$ NC aluminum pigmented coating per Hi－Shear Spec． 294 with color white on thread end．
Phosphate fluoride treat with color orange on thread end，and cetyl alcohol lube per Hi－Shear Spec． 305.
Surface coating per Hi－shear Spec．306．Type II HI－KOTETM 2 solid film lube Hi－Shear Spec．292．，and cetyl alcohol lube per Hi－Shear Spec 305 Hi－Shear Spec．292．，and cetyl alcohol lube per Hi－Shear Spec． 305 per Hi－Shear Spec． 305.

SPECIFICATION：HI－LITE ${ }^{\text {TM }}$ Product Specification 380，except as noted．
CODE：First dash number indicates nominal diameter in $1 / 32$ nds． second dash number indicates maximum grip in $1 / 16$ ths． See Finish note for explanation of code letters．
HOW TO ORDER
EXAMPLE：Pin Part Number
HST755AP8－8

$8 / 16$ or 1／2 Maximum Grip Length Finish Code
umber

