INDENTED HEAD MARKING 010 MAX DEPTH




HI-LOK ${ }^{\text {TM }}$ PIN AND COLLAR AFTER ASSEMBLY

SEE COLLAR STANDARDS
FOR COLLAR STRENGTHS.
LOWER STRENGTH (IN OR COLLAR) DETERMINES SYSTEM STRENGTH

| $\begin{aligned} & \text { FRST } \\ & \text { DASH } \\ & \text { NO. } \end{aligned}$ | $\begin{aligned} & \text { PIN } \\ & \text { NOM } \\ & \text { DIA } \end{aligned}$ | $\underset{\text { DIA }}{\mathbf{A}}$ | $\underset{\mathrm{REF}}{\mathrm{~B}}$ | D DIA |  | $\begin{aligned} & \text { TD } \\ & \text { DIA } \end{aligned}$ | $\underset{\mathrm{REF}}{\mathbf{G}}$ | H | $\underset{R}{\mathbf{R}}$ | $\underset{\substack{\text { CHANFER } \\ \mathrm{REF}}}{\mathbf{S}}$ | THREAD MODIFED | SOCKET |  |  | $\begin{array}{c\|} \text { DOUBLE } \\ \text { SHEAR } \\ \text { POUNDS } \\ \text { MINMMM } \end{array}$ | TENSION POUNDS MINMUM |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{array}{\|c} \text { WTHOUT } \\ \text { COATING } \\ \text { ORSOUD } \\ \text { FLLM } \end{array}$ | $\begin{gathered} \text { AFITR } \\ \text { COATNG } \\ \text { ORSOHD } \\ \hline \end{gathered}$ |  |  |  |  |  |  | $\underset{H E X}{\mathbf{W}}$ | $\underset{\text { DEPTH }}{\mathbf{T}}$ | $\begin{aligned} & \mathrm{Y} / \mathrm{A} \end{aligned}$ |  |  |
| 5 |  |  |  |  |  |  | NOTE: USE HL110V()6-() |  |  |  |  |  |  |  |  |  |
| 6 | 7/32 | $\begin{aligned} & .315 \\ & .295 \end{aligned}$ | . 325 | $\begin{aligned} & .2182 \\ & .2177 \end{aligned}$ | $\begin{aligned} & .2182 \\ & .2172 \end{aligned}$ | $\begin{aligned} & .1840 \\ & .1810 \end{aligned}$ | . 025 | $\begin{aligned} & .055 \\ & .045 \end{aligned}$ | $\begin{aligned} & .025 \\ & .015 \end{aligned}$ | $1 / 32 \times 37^{\circ}$ | $\begin{aligned} & \hline \text { 1900-32 } \\ & \text { UNJF-3A } \end{aligned}$ | $\begin{aligned} & \hline .0806 \\ & .0791 \end{aligned}$ | $\begin{aligned} & .135 \\ & .115 \end{aligned}$ | $\begin{aligned} & .119 \\ & .104 \end{aligned}$ | 7,100 | 2,500 |
| 8 | 9/32 | $\begin{aligned} & .412 \\ & .387 \end{aligned}$ | . 395 | $\begin{aligned} & \hline .2807 \\ & \hline \end{aligned}$ | $\begin{aligned} & .2807 \\ & .2797 \\ & \hline \end{aligned}$ | $\begin{array}{r} .2440 \\ .2410 \\ \hline \end{array}$ | . 030 | $\begin{aligned} & \hline .069 \\ & .059 \end{aligned}$ | $\begin{aligned} & .025 \\ & \hline 015 \end{aligned}$ | $1 / 32 \times 37^{\circ}$ | $\begin{array}{r} \hline 2500-28 \\ \text { UNJF-3A } \end{array}$ | $\begin{aligned} & .0967 \\ & .0947 \end{aligned}$ | $\begin{array}{r} .150 \\ .130 \\ \hline \end{array}$ | $\begin{array}{r} .142 \\ .122 \\ \hline \end{array}$ | 11,800 | 4,300 |
| 10 | 11/32 | $\begin{aligned} & .505 \\ & .475 \end{aligned}$ | . 500 | $\begin{aligned} & .3432 \\ & .3427 \\ & \hline \end{aligned}$ | $\begin{aligned} & .3432 \\ & .3422 \\ & \hline \end{aligned}$ | $\begin{array}{r} .3060 \\ .3020 \\ \hline \end{array}$ | . 035 | $.078 .$ | $\begin{array}{r} .030 \\ .020 \\ \hline \end{array}$ | $3 / 64 \times 37^{\circ}$ | $\begin{array}{r} 3125-24 \\ \text { UNJF-3A } \\ \hline \end{array}$ | $\begin{array}{r} .1295 \\ .1270 \\ \hline \end{array}$ | $\begin{array}{r} .170 \\ .150 \\ \hline \end{array}$ | .180 .160 | 17,600 | 6,300 |
| 12 | 13/32 | $\begin{aligned} & \hline .600 \\ & .565 \end{aligned}$ | . 545 | $\begin{aligned} & \hline .4057 \\ & .4052 \\ & \hline \end{aligned}$ | $\begin{aligned} & .4057 \\ & .4047 \end{aligned}$ | $\begin{array}{r} .3680 \\ .3640 \\ \hline \end{array}$ | . 040 | $.088$ | $\begin{aligned} & \hline .030 \\ & .020 \end{aligned}$ | $3 / 64 \times 37^{\circ}$ | $\begin{array}{r} 3750-24 \\ \text { UNJF-3A } \end{array}$ | $\begin{aligned} & \hline .1617 \\ & .1582 \end{aligned}$ | $\begin{array}{r} .200 \\ .180 \\ \hline \end{array}$ | $\begin{array}{r} .217 \\ .197 \\ \hline \end{array}$ | 24,600 | 8,700 |
| 14 | 15/32 | $\begin{array}{r} .676 \\ .641 \\ \hline \end{array}$ | . 635 | $\begin{aligned} & .4682 \\ & .4677 \\ & \hline \end{aligned}$ | $\begin{aligned} & .4682 \\ & .4672 \\ & \hline \end{aligned}$ | $\begin{array}{r} .4310 \\ .4260 \\ \hline \end{array}$ | . 045 | $\begin{array}{r} .105 \\ .093 \\ \hline \end{array}$ | $\begin{array}{r} .030 \\ .020 \\ \hline \end{array}$ | $3 / 64 \times 37^{\circ}$ | 4375-20 UNJF-3A | $\begin{array}{r} .1930 \\ .1895 \\ \hline \end{array}$ | $\begin{array}{r} .230 \\ .210 \\ \hline \end{array}$ | . 253 | 32,700 | 12,100 |
| 16 | 17/32 | $\begin{aligned} & .770 \\ & .735 \\ & \hline \end{aligned}$ | . 685 | $\begin{aligned} & .5307 \\ & .5302 \\ & \hline \end{aligned}$ | $\begin{aligned} & .5307 \\ & .5297 \\ & \hline \end{aligned}$ | $\begin{array}{r} .4930 \\ .4880 \\ \hline \end{array}$ | . 050 | $\begin{aligned} & \hline .116 \\ & .103 \\ & \hline \end{aligned}$ | $\begin{array}{r} .030 \\ .020 \\ \hline \end{array}$ | $3 / 64 \times 37^{\circ}$ | $\begin{array}{r} .5000-20 \\ \text { UNJF-3A } \\ \hline \end{array}$ | $\begin{array}{r} .2242 \\ .2207 \\ \hline \end{array}$ | $\begin{aligned} & .260 \\ & .240 \\ & \hline \end{aligned}$ | $\begin{array}{r} .289 \\ .269 \\ \hline \end{array}$ | 42,000 | 15,300 |
| 18 | 19/32 | $\begin{array}{r} .864 \\ .829 \\ \hline \end{array}$ | . 770 | $\begin{aligned} & .5927 \\ & .5922 \\ & \hline \end{aligned}$ | $\begin{aligned} & .5927 \\ & .5917 \\ & \hline \end{aligned}$ | $\begin{array}{r} .5550 \\ .5500 \\ \hline \end{array}$ | . 055 | $\begin{array}{r} .127 \\ .112 \\ \hline \end{array}$ | $\begin{array}{r} .040 \\ .025 \\ \hline \end{array}$ | $1 / 16 \times 37^{\circ}$ | $\begin{array}{r} .5625-18 \\ \text { UNJF-3A } \\ \hline \end{array}$ | $\begin{array}{r} .2555 \\ .2520 \\ \hline \end{array}$ | $\begin{array}{r} .290 \\ .270 \\ \hline \end{array}$ | $\begin{array}{r} .326 \\ .306 \\ \hline \end{array}$ | 52,400 | 19,000 |
| 20 | 21/32 | $\begin{array}{\|c} .953 \\ \hline 918 \end{array}$ | . 825 | $\begin{aligned} & \hline .6552 \\ & .6547 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline .6552 \\ & \hline .6542 \end{aligned}$ | $\begin{aligned} & .6180 \\ & .6120 \end{aligned}$ | . 060 | $\begin{array}{r} \hline .137 \\ .122 \\ \hline \end{array}$ | $\begin{aligned} & \hline .040 \\ & .025 \end{aligned}$ | $1 / 16 \times 37^{\circ}$ | $\begin{aligned} & \hline .6250-18 \\ & \text { UNJF-3A } \end{aligned}$ | $\begin{array}{r} .2555 \\ .2520 \\ \hline \end{array}$ | $\begin{aligned} & .330 \\ & .305 \end{aligned}$ | $\begin{array}{r} .326 \\ .306 \\ \hline \end{array}$ | 64,100 | 23,000 |
| 24 | 25/32 | $\begin{aligned} & 1.108 \\ & 1.066 \\ & \hline \end{aligned}$ | 1.050 | $\begin{aligned} & .7802 \\ & .7797 \\ & \hline \end{aligned}$ | $\begin{aligned} & .7802 \\ & .7792 \\ & \hline \end{aligned}$ | $\begin{array}{r} .7430 \\ .7370 \\ \hline \end{array}$ | . 070 | $\begin{array}{r} .151 \\ .136 \\ \hline \end{array}$ | $\begin{array}{r} .045 \\ .030 \\ \hline \end{array}$ | $1 / 16 \times 37^{\circ}$ | $\begin{array}{r} 7500-16 \\ \text { UNJF-3A } \\ \hline \end{array}$ | $\begin{array}{r} .3185 \\ .3150 \\ \hline \end{array}$ | $\begin{aligned} & .395 \\ & .365 \end{aligned}$ | $.398$ | 90,900 | 30,700 |
| 28 | 29/32 | $\begin{aligned} & \hline 1.285 \\ & 1.241 \\ & \hline \end{aligned}$ | 1.210 | $\begin{aligned} & \hline .9052 \\ & .9047 \\ & \hline \end{aligned}$ | $\begin{aligned} & .9052 \\ & .9042 \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline .8680 \\ & .8610 \end{aligned}$ | . 090 | $\begin{aligned} & .187 \\ & .172 \\ & \hline \end{aligned}$ | $\begin{aligned} & .050 \\ & .035 \end{aligned}$ | $5 / 64 \times 37^{\circ}$ | $\begin{aligned} & 8750-14 \\ & \text { iN.JF-3A } \end{aligned}$ | $\begin{aligned} & .3820 \\ & .3780 \end{aligned}$ | $\begin{array}{r} .455 \\ .425 \\ \hline \end{array}$ | $.471 .$ | 122,000 | 45,000 |
| 32 | 1-1/32 | $\begin{array}{r} 1.468 \\ 1.424 \\ \hline \end{array}$ | 1.390 | $\begin{array}{\|l} \hline 1.0302 \\ 1.0297 \\ \hline \end{array}$ | $\begin{array}{\|l} \hline 1.0302 \\ 1.0292 \\ \hline \end{array}$ | $\begin{array}{r} .9930 \\ .9860 \\ \hline \end{array}$ | 110 | $\begin{array}{r} .218 \\ .203 \\ \hline \end{array}$ | $\begin{array}{r} .060 \\ .045 \\ \hline \end{array}$ | $5 / 64 \times 37^{\circ}$ | $\begin{aligned} & 1.0000-12 \\ & \text { UNJF-3A } \\ & \hline \end{aligned}$ | $\begin{array}{r} .5100 \\ .5040 \\ \hline \end{array}$ | $\begin{array}{r} .580 \\ .550 \\ \hline \end{array}$ | $.618$ | 158,000 | 60,900 |


| dRAWN | DATE |  |
| :---: | :---: | :---: |
| BRIEJ | 1966-04-07 |  |
| J.F.OBISPO | 2014-07-29 |  |
| APPROVED | ${ }^{\text {DATE }}$ | TITANIUM |
| MLLLER | 1968-04-07 | 1/16 GRIP VARIATION, 1/32 OVERSIZE |
| REVIISION |  | DRAWING NUMBER |
| (27) | K. PHAM 2022-02-07 | 1L410 |

Hi-Shear Corporation

EROSPACE
hi-shearcomoration
2600 SKYPARK DRIVE, TORRANCE, CALIFORNIA 90509 U.S.A.

GENERAL NOTES: 1. Concentricity: "A" to "D" diameter within . 010 FIM.
2. Dimensions are in inches and to be met after finish
3. Surface texture per ASME B46.1
ole preparation per NAS618
5 Maximum "D" diameter may be increased by .0002 to allow for solid film or aluminum coating application.
6 Broach petals removed
77 Dimensions to be met before finish for "VY" code only.
8. Oversize replacement for HL10 and HL110.

9 Non-lubed pins must be used with lubed collars or wet sealant
(27) 10 After February, 21st of 2015, HI-KOTE 1 aluminum pigmented coating
will be replaced by REACH compliant HI-KOTE ${ }^{\text {TM }} 1$ NC aluminum pigmented coating per Hi-Shear Spec. 294 on fasteners coated inUK and European Union.

## MATERIAL: 6AL-4V titanium alloy per AMS4928 or AMS4967

SPECIFICATION: HI-LOK ${ }^{\text {TM }}$ Product Specification 342.

CODE: First dash number indicates nominal diameter in $1 / 32$ nds of the pin which HL410 oversize pin replaces. pin which HL410 oversize pin replaces. See Finish note for explanation of code letters.

## HOW TO ORDER

EXAMPLE: Pin Part Numbe HL410VAP8-8 TL $8 / 16$ or $1 / 2$ Maximum Grip Length Replaces $8 / 32$ or $1 / 4$ Nominal Diameter Pin - Finish Code

HEAT TREAT: $\quad 160,000$ psi tensile minimum ( 95,000 psi shear minimum for sizes up to $3 / 4$; 90,000 psi shear minimum for $7 / 8$ and larger).

FINISH: HL410V()-( ) = Cetyl alcohol lube per Hi-Shear Spec. 305
(27) 10 HL410VAP( )-( ) = HI-KOTE 1 or HI-KOTE 1 TM 1 NC aluminum pigmented coating per Hi-Shear Spec. 294, and cetyl alcohol lube per Hi-Shear Spec. 305
(27) 10 HL410VAZ ( )-( ) = HI-KOTE ${ }^{T M} 1$ or HI-KOTE ${ }^{T M} 1$ NC aluminum pigmented coating per Hi-Shear Spec. 294, with color black on HL410VBJ ( )-( ) thread end, and cetyl alcohol lube per Hi-Shear Spec. 305.
HL410VBJ( )-( ) = I.V.D. aluminum coating per MIL-DTL-83488, Type II, Class 3, and cetyl alcohol lube per
HL410VBR( )-( ) = Color code white on
9 HL410VBU( )-() = I.V.D. aluminum coating per MIL-DTL-83488, Type I, Class 3, with color yellow on thread end. 9 HL410VBV( )-( ) = I.V.D. aluminum coating per MIL-DTL-83488, Type II, Class 3, with color blue on thread end.

HL410VCB( )-( ) = I.V.D. aluminum coating per MIL-DTL-83488, Type I, Class 3, with color black on thread end,
and cetyl alcohol lube per Hi-Shear Spec. 305
6 HL410VDK( )-( ) = Solid film lube per "KalGard ${ }^{\text {TM }}$ " FA. "KALGARD" is a trademark of Metal Improvement Company.
HL410VF()-() = Surface coating per Hi-Shear Spec. 306, Type I, color blue, and cetyl alcohol lube per Hi-Shear Spec. 305
HL410VHD ( $)-()=$ I.V.D. aluminum coating per BAC5315, with color red on thread end, and cetyl alcohol lube per
6 $\mathrm{HL410VK}()-()$ = Solid fim Spec. 305.
HL410VLJ ()-() = Surface coating per Hi-Shear Spec. 306, Type II, and solid film lube per AS5272.
HL410VLV ()-( ) = Phosphate fluoride treat and Esna-Lube No. 382 (Everlube Corp).
HL410VR( $)-()^{(1)}=$ Surface coating per Hi-Shear Spec. 306, Type II, and solid film lube per "Electrofilm" 4396.
HL410VRA ( )-( ) = Phosphate fluoride treat with color red on thread end and cetyl alcohol lube per Hi-Shear Spec. 305
HL410VSY ( )-( ) = Phosphate fluoride treat, solid film lube per AS5272, Type I, and color red on thread end
HL410VT() = Surface coating per Hi-Shear Spec. 306, Type I, color pink, and cetyl alcohol lube per Hi-Shear
HL410VTA( )-( ) = Anodize Ti-Shield III and HI-KOTE ${ }^{\text {TM }} 2$ solid film lube per Hi-Shear Spec. 292, and cetyl alcohol lube per Hi-Shear Spec. 305.
HL410VTB ( ) ( ) = HI-KOTETM 2 solid film lube per Hi-Shear Spec. 292, and cetyl alcohol lube per Hi-Shear Spec. 305 HL410VTF ( )-( $)=$ HI-KOTE ${ }^{\text {TM }} 2$ solid film lube per Hi-Shear Spec. 292
HL410VTL( )-( ) = Anodize Ti-Shield III, solid film lube per DAG-258, and cetyl alcohol lube per Hi-Shear Spec. 305; or Anodize Ti-Shiedize Type II, solid film lube per TI-O-LUBE TAL-58, and cetyl alcohol lube per
anodize per Tiod
HL410VTT()-() Hi-Shear Spec. 305
HL410VUE ( )-( ) = Surface coating per Hi-Shear Spec. 306, Type II, and cetyl alcohol lube per Hi-Shear Spec. 305 HL410VUU( )-( )
HL410VV( )-()
7 $7 \mathrm{HL410VY}()-() \quad=$ Surface coating per Hi-Shear Spec. 306, Type I, color blue, and solid film lubricant per M88 = Surface coating per Hi-Shear Spec. 306, Typ
 HL410VNKK ()-() end, and cetyl alcohol lube per Hi-Shear Spec. 305

Spec 294 on threads only, with color silver on thread end and cotyl pigmented coat hy per Hi-Shear HL410VNKL ( )-( ) = HI-KOTE TM 1 NC aluminum pigmented coating per Hi-Shear Spec. 294 on threads only, with color silver HL410VHK ( )-( ) $\quad \begin{aligned} & \text { on thread end, and cetyl alcohol ube per Hi-Shear Spec. } 305 . \\ & =H^{-K O T E}\end{aligned}{ }^{\text {TM }} 4 \mathrm{NC}$ aluminum coating per Hi-Shear Spec. 397.

